
Is AIS Based Misbehavior Detection
Suitable for Wireless Sensor Networks?

Martin Drozda Sven Schaust Helena Szczerbicka
Leibniz University of Hannover, FG Simulation und Modellierung, Dept. of Computer Science

Welfengarten 1, 30167 Hannover, Germany.
Email: {drozda,svs,hsz}@sim.uni-hannover.de

Abstract— Sensor networks are a flavor of ad hoc wireless net-
works with limited computational capabilities. The task to protect
such networks against misbehavior is therefore more complicated
as any detection mechanism has to be simple and efficient. We
employed mechanisms based on Artificial immune systems (AIS)
in order to detect misbehavior. We conclude that AIS based
misbehavior detection offers a decent detection performance at a
very low computational cost. We show that misbehavior detection
when applied at both the MAC and network layers may still not
be sufficient, instead it will be necessary to extend it to layers
with end-to-end connection information; this would also allow
for classifying misbehavior by its potential to cause harm.These
results have a direct impact on the design of AIS for sensor
networks and on engineering of sensor networks.

I. I NTRODUCTION AND MOTIVATION

A sensor network is a collection of small wireless devices
(sensors) that are able to monitor environmental or physical
conditions such as humidity, temperature, motion or noise.
These sensors are suitably spatially distributed in the moni-
tored area and are able to communicate with each other. Sensor
networks lack a centralized authority that would control the
flow of individual data packets, instead data connections can
be established between any sensor in an ad hoc way; when
two sensors are unable to communicate directly, data packets
are forwarded by intermediate sensors that serve as routers.

Due to the lack of a centralized authority sensor networks
are vulnerable to misbehavior, malfunction or failure. Since
sensors are expected to have limited computational power and
be battery powered, a system that is going to protect them
has to belightweight. Additionally, it has to be adaptive as
sensor networks are expected to operate autonomously with
sporadic maintenance, it has to be able to undertake action
against misbehaving sensors, possibly isolate them, in an
extreme case to alarm a human operator. Therefore classical
intrusion detection approaches, many of which are based on
intrusion signatures that must be frequently updated, or on
pre-programmed rules that do not offer any self-configuration,
are not suitable for this task.

An example of systems that fulfill the above requirements
are Artificial immune systems (AIS). AIS are based on a
mechanism that is present in human bodies, namely, onthe
Human immune system (HIS); see [8], [15], [2] and references
therein. AIS are a part of recent promising advances in
Intrusion detection systems.

Motivated by results in [8], [15] we have undertaken a

detailed performance study of AIS with focus on sensor
networks. The general conclusions based on building an AIS
for sensor networks can be summarized as follows:
1. Given the ranges of input parameters that we used and
considering the computational capabilities of current sensor
devices, we conclude that AIS based misbehavior detection
offers a decent detection rate at a low computational cost; this
makes it an ideal solution for sensor networks.
2. One of the main challenges in designing well performing
AIS for sensor networks is the set of “genes”. Genes are
necessary to measure a network’s performance from a node’s
viewpoint, must be easy to compute and robust against mis-
behavior. This is similar to observations made in [16].
3. Our results suggest that to increase the detection perfor-
mance, an AIS has to benefit from information available at all
layers of the OSI protocol stack; this includes also detection
performance with regards to a simplistic flavor of misbehavior
such as packet dropping. This supports ideas shortly discussed
in [10] where the authors suggest that information available at
the application layer deserves more attention.

II. A RTIFICIAL IMMUNE SYSTEMS

A. Background

The Human immune system is a rather complicated mecha-
nism that is able to protect humans against an amazing set
of extraneous attacks. This system is remarkably efficient,
most of the time, in discriminating betweenself andnon-self
antigens.1 A non-self antigen is anything that can initiate an
immune response; examples are a virus, bacteria, or splinter.
The opposite to non-self antigens are self antigens; self anti-
gens are human organism’s own cells.

The important features of HIS have often a dual nature.
These dual natures include self vs non-self recognition, innate
vs acquired immunity, primary vs secondary response, or
general vs specific response. Some immunity mechanisms are
antigen specific, systemic (not confined to a local area), or
have memory (they are able to launch a stronger response
next time a specific antigen is encountered).

B. Learning

The process of T-cells maturation in thymus is used as
an inspiration for learning in AIS. The creation of T-cells

1Self and non-self in short.

(detectors) in thymus is a result of a pseudo-random process.
After a T-cell is created (see Figure 1), it undergoes a
censoring process callednegative selection. During negative
selection T-cells that bind self are destroyed. Remaining T-
cells are introduced into the body. The recognition of non-
self is then done by simply comparing T-cells that survived
negative selection with a suspected non-self. This process
is depicted in Figure 2. It is possible that the self set is
incomplete, while a T-cell matures (tolerization period) in
the thymus. This leads to producing T-cells that should have
been removed from the thymus and can cause an autoimmune
reaction, i.e. it leads tofalse positives.

DETECTOR

SET
MATCH

NO

YES

REJECT

STRINGS

SELF

STRING

RANDOM

GENERATE

Fig. 1. Detector generation by random-generate-and-test process. Only strings
that do not match anything self become detectors.

MATCH

STRINGS

NEW

YESDETECTOR

SET

DETECTED

NON−SELF

Fig. 2. Recognizing non-self is done by matching detectors with suspected
non-self strings.

C. Theoretical Background

The generate-and-test approach for producing T-cells (de-
tectors) described above is analyzed in [6]. They assume that
both self and non-self sets, as well as detectors can be modeled
as bit-strings of lengthl. Let the size of the self set beNS,
the probability that a randomly chosen detector and a string
from the self set match bePm and the probability that a
string from the non-self set is not matched by any detector
be Pf . Then the time and space complexity of this algorithm
for a fixed matching probabilityPm is O(

−ln(Pf)

Pm(1−Pm)NS
NS)

and O(lNS), respectively. This algorithm requires that the
number of required candidate detectors is exponential toNS.
The advantage of this algorithm is its simplicity and good
experimental results in cases when the number of detectors
to be produced is fixed and small [15]. A review of other
approaches to detector computation can be found in [2].

III. SENSORNETWORKS

A sensor network can be defined in graph theoretic frame-
work as follows: a sensor network is a netN = (n(t), e(t))

where n(t), e(t) are the set of nodes and edges at time
t, respectively. Nodes correspond to automated sensors (or
mobile users) that wish to communicate with each other. An
edge between two nodesA and B is said to exist whenA
is within the radio transmission range ofB and vice versa.
The imposed symmetry of edges is a usual assumption of
many mainstream protocols. The change in the cardinality of
setsn(t), e(t) can be caused by switching on/off one of the
sensors, failure, malfunction, removal, signal propagation, link
reliability and other factors.

Data exchange in a point-to-point (uni-cast) scenario usually
proceeds as follows: a user initiated data exchange leads toa
route query at the network layer of the OSI stack. A routing
protocol at that layer attempts to find a route to the data
exchange destination. This request may result in a path of
non-unit length. This means that a data packet in order to
reach the destination has to rely on successive forwarding by
intermediate nodes on the path. An example of an on-demand
routing protocol designed specifically for ad hoc networks is
DSR [9]. Route search in this protocol is started only when
a route to a destination is needed. This is done by flooding
the network by RREQ2 control packets. The destination node
or an intermediate node that knows a route to the destination
will reply with a RREP control packet. This RREP follows
the route back to the source node and updates routing tables
at each node that it traverses. A RERR packet is sent to the
connection originator when a node finds out that the next node
on the forwarding path is not replaying. We refer the reader
to [11] for more information on sensor networks.

Movement of nodes can be modeled by means of a move-
ment model. A well-known mobility model is theRandom
waypoint model. In this model, nodes move from the current
position to a new randomly generated position at a predeter-
mined speed. After reaching the new destination a new random
position is computed. Nodes pause at the current position for
a time periodt before moving to the new random position.

IV. EXPERIMENTAL SETUP

The purpose of our experiments is to show that AIS are a
viable approach for detecting misbehavior in sensor networks.
In a companion paper [7] we have reviewed different types of
misbehavior at the MAC, network and transport level of the
OSI protocol stack. We note that solutions to some of these
attacks have been already proposed; these are however specific
to a given attack.

We represent self, non-self and detector strings as bit-
strings. The matching rule employed is ther-contiguous bits
matching rule. Two bit-strings of equal length match under
the r-contiguous matching rule if there exists a substring of
length r at positionp in each of them and these substrings
are identical. Detectors are produced by the process shown in
Figure 1, i.e. by means of negative selection when detectors
are created randomly and tested against a set of self strings.

Definitions of input and output parameters:The input
parameters for our experiments were:r parameter for the r-

2RREQ = Route Request, RREP = Route Reply, RERR = Route Error.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000

Sink
Source

(b)

Fig. 3. (a) Topology of our 1,718-node network with 100m radio radius. (b) Measured forwarding path of the 10 connectionsfor a single simulation run
without misbehavior; connections shown with all alternative forwarding routes, if they exist.

1) Negative selection algorithm: random generate and test.Implemented in C++, compiled with GNU g++ v4.0 with -O3 option.
2) Input parameters: 1. r-contiguous matching rule withr = {7, 10, 13, 16, 19, 22}. 2. Encoding: 5 genes each 10 bits long =

50 bits. 3. Number of detectors{500, 1000, 2000, 4000}. 4. Misbehavior level{10, 30, 50%} 5. Window size 500 seconds; 28
complete windows over 4-hour simulation time.

3) Performance measures:real time to compute detectors, number of iterations to compute detectors, detection rate, rate of non-valid
detectors, data traffic rate at nodes; their arithmetic averages and 95% confidence intervals.

4) Network topology: Snapshot of movement modeled by random waypoint mobility model i.e. it is a static network. There were
1,718 nodes. The area was a square of 2,900m×2,950m. The transmission range of transceivers was 100 meters.

5) Number of connections:10 CBR (constant bit rate) connections.MAC protocol : IEEE 802.11b DCF.Routing protocol: DSR.
Other parameters: (i) Propagation path-loss model: two ray(ii) Channel frequency: 2.4 GHz (iii) Topography: Line-of-sight (iv)
Radio type: Accnoise (v) Network protocol: IPv4 (vi) Connection type: UDP.

6) Injection rate: 1 packet/second. 14,400 packets per connection were injected. Packet size was 512 bytes.
7) The number of independent simulation runs for each combination of input parameters was 20. The simulation time was 4 hours.
8) Simulator used:GlomoSim 2.03; hardware used: 30× Linux (SuSE 10.0) PC with 2GB RAM and Pentium 4 3GHz microprocessor.

Fig. 4. Parameters used in the experiment.

contiguous matching rule, the (desired) number of detectors,
misbehavior level and traffic rate at nodes. Misbehavior was
modeled as random packet dropping at selected nodes.

The performance (output) measures were arithmetic average
and 95% confidence intervalsci95% of detection rate, number
of false positives, real time to compute detectors, number of
iterations to compute detectors (number of random tries) and
number of non-valid detectors. The detection ratedr is defined
as dns

ns
, wheredns is the number of detected non-self strings

andns is the total number of non-self strings. A false positive
in our definition is a string that is not self but can still be
a result of anomaly that is identical with the effects of a
misbehavior. A non-valid detector is a candidate detector that
matches a self string and must therefore be removed.

Scenario description:The purpose of this experiment was
to capture “self” and “non-self” packet traffic in a synthetic
static sensor network and test whether using an AIS we
are able to recognize non-self, i.e. misbehavior. We only
considered packet traffic at the MAC and network layer. The
set of genes that represent certain chosen properties of packet
traffic in wireless networks was chosen so that a thorough
functionality test of our AIS is possible. The set is not

complete, i.e. it does not allow is to recognize a large range
of misbehavior activities, in contrary, the idea was to choose
a set of a modest size. In the future we plan to undertake
a more complex simulation experiments with packet traffic
information ranging all over the OSI protocol stack.

The topology of this network was determined by making a
snapshot of 1,718 mobile nodes (each with 100m radio radius)
moving in a square area of 2,900m×2,950m as prescribed by
the random waypoint mobility model; see Figure 3(a). The
motivation in using this movement model and then creating
a snapshot are the results in our previous paper [5] that
deals with structural robustness of sensor network. We chose
source and destination pairs for each connection so that several
alternative independent routes exist; the idea was to benefit
from route repair and route acquisition mechanisms of the
DSR routing protocol, so that the added value of AIS based
misbehavior detection is obvious.

We have used 10 CBR (Constant bit rate) connections. The
connections were chosen so that their length is∼7 hops and
so that these connections share some common intermediate
nodes; see Figure 3(b). For each packet received or sent
by a node we have captured the following information: IP

header type (UDP, 802.11 or DSR in this case), MAC frame
type (RTS, CTS, DATA, ACK in the case of 802.11), current
simulation clock, node address, next hop destination address,
data packet source and destination address and packet size.
Let us assume that the routing protocol finds for a connection
the pathss, s1, ..., si, si+1, si+2, ..., sd from the source node
ss to the destination nodesd, wheress 6= sd. We have used
the following genesto capture certain aspects of MAC and
routing layer traffic information:

MAC Layer:
#1 Ratio of complete MAC layer handshakes between

nodessi andsi+1 and RTS packets sent bysi to si+1. If
there is no traffic between two nodes this ratio is set to
∞ (a large number). This ratio is averaged over a time
period. A complete handshake is defined as a completed
sequence of RTS, CTS, DATA, ACK packets betweensi

andsi+1.
#2 Ratio of data packets sent fromsi to si+1 and then

subsequently forwarded tosi+2. If there is no traffic
between two nodes this ratio is set to∞ (a large
number). This ratio is computed bysi in promiscuous
mode. This ratio is also averaged over a time period.
This gene was adapted from the watchdog idea in [13].

#3 Time delay that a data packet spends atsi+1 before
being forwarded tosi+2. The time delay is observed by
si in promiscuous mode. If there is no traffic between
two nodes the time delay is set to zero. This measure is
averaged over a time period. This gene is a quantitative
extension of the previous gene.

Routing Layer:
#4 The same ratio as in #2 but computed separately for

RERR routing packets.
#5 The same delay as in #3 but computed separately for

RERR routing packets.

The above mentioned time period is 500 seconds.
Encoding of self and non-self antigens:3 Each gene value

was transformed in a 10-bit signature where each bit defines
an interval4 of a gene specific value range. We created self
and non-self antigen strings by concatenation of the defined
genes. Each self and non-self antigen has therefore a size of50
bits. The interval representation was chosen in order to avoid
carry-bits that make the binary representation less compact.

Constructing the self and non-self sets:We have randomly
chosen 28 non-overlapping 500-second windows in our 4-
hour simulation. In each 500-second window self and non-self
antigens are computed for each node. This was repeated 20
times for independent Glomosim runs.

Misbehavior modeling:Misbehavior is modeled as random
data packet dropping; we have randomly chosen 236 nodes
and these were forced to drop{10, 30, 50%} of data packets.

3The non-self antigens are a mixture of self antigens, non-self antigens
and antigens that is not possible to classify due to their similarity to non-self
antigens.

4The interval encoding of genes is adapted from [15]. This wayonly one
of the 10 bits is set to 1, i.e. there are only 10 possible valuelevels that it is
possible to encode in this case.

However, there were only 3-10 nodes with misbehavior and
with a statistically significant number of packets for forward-
ing in each simulation run.

Simulation phases:The experiment was done in four phases.
1. 20 independent Glomosim runs were done for one of
{10, 30, 50%} misbehavior levels and “normal” traffic with
no misbehavior.
2. Self and non-self antigen computation.
3. The 20 “normal” traffic runs were used to compute detec-
tors. Given the 28 windows and 20 runs, the sample size was
20×28 = 560, i.e. detectors at each node were discriminated
against 560 self antigens.
4. Using the runs with{10, 30, 50%} misbehavior levels, the
process shown in Figure 2 was used for detection.
Experiment was then repeated with differentr, desired number
of detectors and misbehavior level.

The parameters for this experiment are summarized in
Figure 4. The injection rate and packet sizes were chosen in
order to comply with usual data rates of sensors (e.g. 38.4kbps
for Mica2; see [1]). One can consider packet traffic in sensor
networks be more bursty and less frequent than in our model
but there is not much experience with these types of networks
and their use can vary in the future.

V. RESULTSEVALUATION

When considering results presented in this section one
should remember that the computational throughput of sensors
lies at max.1% of the used PCs.5 On the other hand, it is
reasonable to expect that computation of detectors6 will be
very infrequent, once per several weeks or months. An initial
set of detectors can be provided at the first deployment. It is
also reasonable to expect that several sensors will be able to
detect a single misbehaving sensor.

The results connected to computation of detectors are shown
in Figure 5. In our experiments we have only considered
the desired number of detectors to be max. 4,000; over this
threshold the computational requirements might be too high
for current sensor devices. Also, each time ther parameter is
incremented by1, the number of detectors should double in
order to make these two cases comparable.

Figure 5(a) shows the real time needed to compute the
desired set of detectors. We can see the real time necessary
increases proportionally with the desired number of detectors;
this complies with the theoretical results presented in [6].
Figure 5(b) shows the percentage of non-valid detectors, i.e.
detectors that were found to match a self string (see Figure 1).
This result points to where the optimal operation point of an
AIS might lie with respect to the choice ofr parameter and the
choice of a fixed number of detectors to compute. We remind
the reader that the larger is ther parameter the smaller is the
probability that a detector will match a self string. Therefore
overhead connected to choosing ther parameter prohibitively

5For example a Mica2 sensor is equipped with an Atmel ATmega 128 8-
bit processor that has peak throughput 16 MIPS, program memory 128kB,
storage memory 512kB; the outdoor radio range is app. 150 meters [1].

6Issues connected with availability of misbehavior-free periods for detector
computation are beyond the scope of this paper.

 1

 10

 100

 4000 2000 1000 500

R
ea

l t
im

e
us

ed
 [s

/n
od

e]

Desired number of detectors

r = 7
r = 10
r = 13
r = 16
r = 19
r = 22

(a) Real time to compute the desired number
of detectors at a node;ci95% < 1%.

 0

 5

 10

 15

 20

 25

 4000 2000 1000 500

N
on

-v
al

id
 d

et
ec

to
rs

 [%
]

Desired number of detectors

r = 7
r = 10
r = 13
r = 16
r = 19
r = 22

(b) Rate of non-valid detectors; forr ≤ 13

is ci95% < 1%, for r ≥ 16 is the sample
size not significant.

 100

 1000

 10000

 4000 2000 1000 500

Ite
ra

tio
ns

 n
ee

de
d

Desired number of detectors

r = 7
r = 10
r = 13
r = 16
r = 19
r = 22

(c) Number of iterations needed in order to
compute the desired number of detectors; for
r ≥ 10 is ci95% < 1%, for r = 7 is
ci95% < 2%.

Fig. 5. Performance of detectors computation.

 0

 20

 40

 60

 80

 100

 4000 2000 1000 500

D
et

ec
tio

n
ra

te
 [%

]

Packet threshold

Number of detectors = 2000

10%
30%
50%

(a) Detection rate vs packet threshold; conf.
interval ranges: for mis. level10% is ci95%
= 3.8-19.8%; for30% is ci95% = 11.9-15.9%;
for 50% is ci95% = 11.0-14.2%.

 0

 20

 40

 60

 80

 100

 22 19 16 13 10 7

D
et

ec
tio

n
ra

te
 [%

]

r

Number of detectors = 2000

10%
30%
50%

(b) Detection rate vsr; ci95% range
similar to (a).

 0

 0.5

 1

 1.5

 2

 22 19 16 13 10 7

N
um

be
r

of
 fa

ls
e

po
si

tiv
es

r

Number of detectors = 2000

10%
30%
50%

(c) Number of false positives; forr ≤ 10 is
ci95% = 0.47-0.68, forr ≥ 13 is the sample
size not significant.

Fig. 6. Performance of misbehavior detection. Misbehaviorlevel = {10, 30, 50}%. In (a) r = 10, in (b) and (c) the packet threshold was 1000.

small should be consider when designing an AIS. Figure 5(c)
shows the total number of generate-and-test tries needed for
computation of detector set of a fixed size.

The task of misbehavior detection (see Figure 2) requires
comparison of the computed detectors with a non-self string.
In our case there is one non-self string computed per a 500-
second window (in general, the window size can be changed
with respect to the traffic properties). The time complexity
of misbehavior detection is proportional to the number of
detectors.

When evaluating the detection rate it is important that the
number of packets that a node forwards is over a certain thresh-
old. If a node lacks packets to forward in the misbehavior-
free learning phase, his ability to learn is limited. If it lacks
packets to forward and at the same time wishes to execute
misbehavior, the impact of misbehavior is limited as there are
no packets to drop. Therefore we only considered nodes with
some minimum forwarding activity. We define a node to be
detected as misbehaving if it gets flagged in at least 14 out
of 28 possible windows. This definition is equivalent (under
reasonable assumptions) to saying that the time to detection
is double the size of the window, i.e. 1000 seconds in this
case. In Figure 6(a) we show dependence of detection ratio
on this packet threshold. Packet threshold of e.g. 500 means

that a node had at least 500 packets to forward in both the
learning and misbehavior phases; this number is measured
over the whole 4-hour simulation period. We conclude that
except for some extremely low threshold values (not shown)
the detection rate stays constant. This figure also shows that
when misbehavior level was set very low, i.e. 10% the AIS
struggled to detect misbehaving nodes. At the 30 and 50%
misbehaving levels the detection rate stays solid at about 70-
85%. The range of the 95% confidence interval of detection
rate is 3.8-19.8%. This is similar to results in [16]. This points
out that misbehavior detection at the MAC and network layers
may not be sufficient, instead AIS based misbehavior detection
should be extended to OSI protocol layers with end-to-end
connection information. This would also allow for classifying
misbehavior by its potential to cause harm as it is suggested
in [3]. It also implicates that watchdog based genes should not
be used in isolation, and in general, that the choice of genes
has to be very careful.

Figure 6(b) shows the impact ofr on detection rate. When
r = {7, 10} the AIS performs well, forr > 10 the detection
rate decreases. This is caused by the inadequate numbers of
detectors used; in general the number of detectors should
double whenr is increased by1.

Figure 6(c) shows the number of false positives. We remind

that in our definition false positives are both nodes that do
not drop any packets and nodes that drop packets due to other
reasons than misbehavior.

In a separate experiment we studied whether the 4-hour
(560 samples) simulation time was enough to capture the
diversity of the self behavior. This was done by trying to detect
misbehavior in 20 independent misbehavior-free Glomosim
runs (different from those used to compute detectors). We
report that we did not observe a single case of an autoimmune
reaction.

VI. RELATED WORK

In [15], [16] the authors introduced an AIS based misbe-
havior detection system for ad hoc wireless networks. They
used Glomosim for simulating data traffic, their setup was an
area of 800×600m with 40 mobile nodes (speed 1 m/s) of
which 5-20 are misbehaving; the routing protocol was DSR.
Four genes were used to capture local behavior at the network
layer. The misbehavior implemented is a subset of misbehavior
introduced in this paper; their observed detection rate is about
55%. Additionally, a co-stimulation in the form of a danger
signal was used in order to inform nodes on a forwarding
path about misbehavior, thus propagating information about
misbehaving nodes around the network.

In [8] the authors describe an AIS able to detect anomalies at
the transport layer of the OSI protocol stack; only wired TCP
networks are considered. Self is defined as normal pairwise
TCP connections. Each detector is represented as a 49-bit
string. The pattern matching is based on r-contiguous bits with
a fixedr = 12.

Ref. [12] discusses a network intrusion system that aims
at detecting misbehavior by capturing TCP packet headers.
They report that their AIS is unsuitable for detecting anomalies
in communication networks. This result is questioned in [4]
where it is stated that is due to the choice of problem
representation and due to the choice of matching threshold
r for r-contiguous bit matching.

The main discerning factor between our work and works
shortly discussed above is that our genes benefit from infor-
mation at both the MAC and network layers, we carefully
considered hardware parameters of current sensor devices,
the set of input parameters was designed in order to target
specifically sensor networks and our simulation setup reflects
structural qualities of sensor networks with regards to exis-
tence of multiple independent routing paths. In comparison
to [15], [16] we show that in case of static sensor networks it
is reasonable to expect the detection rate to be above 80%.

VII. C ONCLUSIONS ANDFUTURE WORK

Even though we answered some basic question on the
suitability and feasibility of AIS for detecting misbehavior in
sensor networks a few questions remain open.

The key question in the design of AIS is the quantity,
quality and ordering of genes that are used for measuring
behavior at nodes. To answer this question a detailed formal
analysis of communications protocols will be needed. The set
of genes should be as “complete” as possible with respect to

any possible misbehavior. The choice of genes should impose
a high degree of sensor network’s survivability defined asthe
capability of a system to fulfill its mission in a timely manner,
even in the presence of attacks, failures or accidents[14]. It is
therefore of paramount importance that the sensor network’s
mission is clearly defined and achievable under normal oper-
ating conditions.

Our intermediate research direction will be to undertake
similar tests as described in this document on Mica2 sen-
sors [1] and verify viability of AIS based misbehavior de-
tection in real world settings.

ACKNOWLEDGMENTS

This work was supported by the German Research Foun-
dation (DFG) under the grant no. SZ 51/24-1 (Survivable Ad
Hoc Networks – SANE).

REFERENCES

[1] Crossbow Technology Inc.www.xbow.com
[2] Uwe Aickelin, Julie Greensmith, Jamie Twycross. ImmuneSystem Ap-

proaches to Intrusion Detection - A Review.Proc. the 3rd International
Conference on Artificial Immune Systems (ICARIS 2004), 2004.

[3] U. Aickelin, P. Bentley, S. Cayzer, J. Kim, and J. McLeod.Danger theory:
The link between ais and ids.Proc. International Conference on Artificial
Immune Systems (ICARIS’03), 2003.

[4] J. Balthrop, S. Forrest, M. Glickman. Revisiting lisys:Parameters and
normal behavior.Proc. Congress on Evolutionary Computing (CEC02),
2002.

[5] C. L. Barrett, M. Drozda, D. C. Engelhart, V. S. Anil Kumar, M. V.
Marathe, M. M. Morin, S. S. Ravi, J. P. Smith. Understanding Protocol
Performance and Robustness of Ad Hoc Networks Through Structural
Analysis. Proc. IEEE International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob 2005), 2005.

[6] D’haeseleer, P., Forrest, S., and Helman, P. An immunological approach
to change detection: Algorithms, analysis and implications. Proc. IEEE
Symposium on Research in Security and Privacy, 1996.

[7] M. Drozda, H. Szczerbicka. Artificial Immune Systems: Survey and
Applications in Ad Hoc Wireless Networks.Proc. 2006 International
Symposium on Performance Evaluation of Computer and Telecommuni-
cation Systems (SPECTS’06), 2006.

[8] S. Hofmeyr, S. Forrest. Immunity by Design: An ArtificialImmune Sys-
tem.Proc. Genetic and Evolutionary Computation Conference (GECCO-
1999), 1999.

[9] D. Johnson, D. Maltz. Dynamic Source Routing in Ad Hoc Wireless
Networks. Mobile Computing, Tomasz Imielinski and Hank Korth, Eds.
Chapter 5, pp. 153-181, Kluwer Academic Publishers, 1996.

[10] Zhang, Y. and Lee, W. and Huang, Y.A. Intrusion Detection Techniques
for Mobile Wireless Networks.Wireless Networks (WINET), vol. 9, no.
5, pp. 545–556, 2003.

[11] Karl, H., Willig, A. Protocols and Architectures for Wireless Sensor
Networks.John Wiley & Sons, 2005.

[12] Kim, J., Bentley, P. J. Evaluating Negative Selection in an Artificial
Immune System for Network Intrusion Detection,Proc. Genetic and
Evolutionary Computation Conference 2001 (GECCO-2001), 2001.

[13] Sergio Marti, T. J. Giuli, Kevin Lai and Mary Baker. Mitigating
routing misbehavior in mobile ad hoc networks.Proc. the 6th annual
international conference on Mobile Computing and Networking, 2000.

[14] James P. G. Sterbenz, Rajesh Krishnan, Regina Rosales Hain, Alden W.
Jackson, David Levin, Ram Ramanathan, John Zao. Survivablemobile
wireless networks: issues, challenges, and research directions.Proc. ACM
workshop on Wireless security, 2002.

[15] Slaviša Sarafijanović, Jean-Yves Le Boudec. An Artificial Immune
System for Misbehavior Detection in Mobile Ad-Hoc Networkswith
Virtual Thymus, Clustering, Danger Signal and Memory Detectors. Proc.
the 3rd International Conference on Artificial Immune Systems (ICARIS
2004), 2004.

[16] Jean-Yves Le Boudec, Slaviša Sarafijanović. An Artificial Immune
System Approach to Misbehavior Detection in Mobile Ad-Hoc Networks.
Proc. Bio-ADIT’04, 2004.

