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Abstract— There has recently been renewed interest among
various research communities in understanding the structure of
social and infrastructure networks. Motivated by this line of
research, we conduct an in-depth structural analysis of large
ad hoc networks derived by placing nodes randomly as well as
by placing them in realistic urban environments, a scenario that
is rapidly gaining interest [13]. We use structural analysis in two
illustrative settings. First, we use it to study the performance of
network protocols. Our results indicate that structural analysis
of interference graphs that model ad hoc networks can yield a
good first order prediction of the overall protocol performance.
Second, we study the robustness of a network to random node and
edge failures. This study is important in the context of ad hoc
networks wherein one expects nodes/edges to fail due various
natural or system dependent reasons.

The experimental results presented in this paper show the
following: (i) Structural properties of ad hoc networks depend
crucially on the spatial distribution of the nodes. (ii) Structural
properties of the network significantly affect the performance of
protocols. (iii) Graph theoretic measures can provide good first
order insights into the network protocol performance. (iv) The
measures are also useful in characterizing the robustness of such
networks.

Keywords: Graph analysis, simulation, protocol performance,
network capacity, robustness.

I. INTRODUCTION

There is currently considerable effort in characterizing the
structural properties of social networks from a graph theoretic
viewpoint [2], [12]. The primary motivation for such studies
is that by suitable abstraction, many different aspects of
these social networks can be understood by viewing them as
transport networks. For example, transmission of an infectious
disease takes place via social contacts between individuals.
Similarly, wireline and wireless networks act as transport
networks for digital data in the form of packets. The intent
is to relate the structural properties of such transport networks
to their performance and robustness. This research includes
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the following three interwoven efforts: (i) explaining how
such networks are formed, (ii) designing such networks for
optimal performance and (iii) understanding intrinsic vulner-
abilities of such networks and obtaining methods derived
from structural analysis for mitigating these vulnerabilities.
Albert and Barabasi [2] have highlighted the fact that “real
world” graphs have a fundamentally different structure than
traditional random graphs.7 More importantly, structural prop-
erties can often be used to explain several characteristics
of such networks. Structural properties assume even greater
significance in the context of protocol design problems in
wireless networks, where protocols are often studied and tuned
for random distributions of points.

Motivated by this line of research, we undertake a similar
study of ad hoc networks formed by a group of individ-
ual transceivers (nodes) communicating through the wireless
medium. There is a natural way to construct the interference
graph induced by a collection of communicating transceivers.
Each transceiver has an associated broadcast range, and it can
communicate with all transceivers within its range. In this
work, we make two assumptions: (i) All nodes have the same
broadcast range. (ii) The decay in power levels is insignificant
inside the range and falls to zero outside the range. Under these
assumptions, this graph theoretic model associates a unit disk
graph (also called the interference graph; see Section II-
A for a definition) with a group of transceivers. Although
this is a fairly simplistic model, it captures the essence of the
communication among the transceivers. Various modifications
are possible and we refer the reader to [19] and Section II-A
for further discussion.

Here we extend the study of structural properties of ad hoc
networks begun in [8]. We focus on some global properties
that have a significant influence on protocol performance in
and robustness of such networks. The global properties studied
are shortest path lengths, size of distance-2 matching, and
balanced cuts. The first is representative of the end-to-end
delay in an ad hoc network, the second is related to the
capacity of the MAC layer, and the third to the maximum
network packet flow. The main contributions of this paper are
summarized below.

(1) We study two different spatial distributions of transceivers.
The first (called the random distribution), is obtained by

7We refer here to the type of random graphs often called Erdös-Rényi
random graphs which are defined with a number of nodes (n) and a probability
(p) for the existence of each edge [9]. The existence of an edge is independent
of the other edges.



initially placing nodes uniformly randomly in the plane and
then allowing them to move around randomly according to
the Random Waypoint mobility model. This distribution has
been studied extensively and serves as a benchmark for our
comparisons [8]. We also study another class of spatial distri-
butions (called structured distributions) obtained by placing
transceivers in a realistic urban environment, namely along
the roadway system in the city of Portland, OR (see Section
II-B). Our results show that these random and structured spa-
tial distributions produce structurally different communication
networks (and yield different performance). Additionally, even
different parts of a structured distribution could have very
different structure, in contrast to random distributions, which
are pretty uniform. Contrary to common practice of studying
protocols for random distributions of points, we demonstrate
the importance of using realistic distributions when simulating
scenarios that are inherently structured.

(2) We study the effects of structural properties on the
performance of network protocols. This is especially crucial
since most protocols are studied and optimized for random
distributions of points; our results suggest that with the same
parameters, protocols perform very differently on structured
distributions. This motivates the need for understanding the
properties of structured distributions.

(3) We study the spatial variation in basic properties in
structured distributions, and observe that if we take different
sections of the city of Portland, several measures such as
degree, clustering coefficient and shortest path distributions,
and distance-2 matching sizes vary quite a bit. This is in con-
trast to random distributions, which are more or less spatially
homogenous. While this observation may seem obvious, to
the best of our knowledge, this is the first such quantitative
demonstration of this fact. From protocol performance point
of view, this means that protocol parameters need to be set
non-uniformly, based on the spatial constraints.

(4) Our results show that graph theoretic measures can be
used to understand the trade-offs between network structure
and protocol performance. As the transmission range of the
devices in the ad hoc network increases, paths become shorter
while the number of simultaneously active edges decreases.
Correspondingly, the latency and the number of MAC control
packets go down while the goodput and routing control packets
go up. The obvious connection between the graph metrics and
performance, coupled with the fact that the graph analysis
can be done much faster than simulations, suggests that graph
analysis may be useful in designing and assessing networks
and obtaining first order predictions of overall protocol per-
formance.

(5) We also study the implications of the network structure on
the robustness of the network under node/edge failures. This
study is important in ad hoc networks wherein one expects
nodes to fail routinely due various natural or system dependent
reasons. This study is carried out in two steps. In the first
step, we study the graph theoretic properties of a sequence
of induced networks as nodes/edges fail (equivalently, as

nodes/edges are removed from the network). We then use
a network simulator to see if the variation in the values of
graph parameters correlates with the degradation in protocol
performance. The results show that the impact of node/edge
failures on the performance can be predicted to a reasonable
degree using graph theoretic tools.

A. Related Work

In general, it is rather difficult to analyze ad hoc com-
munication networks consisting of a large number of nodes.
One factor that contributes to this difficulty is the interaction
among the various levels in the network protocol stack [6],
[20] and the varied performance of the protocols. A significant
volume of research focuses on designing good protocols for
different network layers. Since these protocols are hard to
analyze theoretically, they are often evaluated empirically.
While studying mobile ad hoc networks, researchers use sim-
ple mobility models (e.g. points moving randomly in the plane)
to generate the underlying interference graphs, which they then
use as test beds for their protocols. Protocols that might work
well in such situations may behave very differently in real
settings. Our thesis is that a study of the structural measures as
undertaken in this paper is a good way to get a rough estimate
of the performance of protocols. In addition, as mentioned in
[6], [7], cross layer protocol interaction is more significant than
previously suspected in determining protocol performance.
Our goal here is to connect the structural analysis of ad hoc
networks to network protocol performance. Our results show
that graph theoretic measures, although useful, have to be
necessarily coupled with network simulation to understand the
problem in a realistic setting. See Section IV for additional
details. A recent paper by Jardosh et al. [15] attempts to
develop a model for generating structured distributions of the
sort we describe here; our measurements provide a useful way
of calibrating such models.

The work presented here is also related to earlier work
on geometric random graphs and percolation theory. Several
authors have investigated the structural properties of geometric
random graphs and percolation theory based results for ad hoc
networks; see [11], [16], [17], [18], [21] and the references
therein. All these papers present probabilistic results showing
that a certain graph property is likely to be true for geometric
random graphs with high probability beyond certain values
of broadcast range. Similarly, in percolation theory and its
application to ad hoc networks, researchers are interested in
proving that the graph continues to have a desired property un-
til a certain threshold for node/edge failures is reached. These
results are not applicable to structured node distributions.
Our experimental results show useful connections between
graph theoretic measures of structured distributions and the
robustness of the corresponding networks. See Section V for
additional details.

Organization. The remainder of the paper is organized as
follows. Section II contains background information. Sec-
tion III presents the variation of some standard graph struc-
tural measures for random and structured node distributions.



Section IV examines some graph measures that can be used
to estimate certain network performance limits as well as
network simulation results. Section V presents our results
concerning the robustness of ad hoc networks under node and
edge failures. Finally, Section VI concludes the paper.

II. PRELIMINARIES

A. Graph Theoretic Model and Definitions

Our setting consists of n points in the plane, denoted by
the set V . Each point represents a transceiver. Given a radius
R, Du denotes the disk of radius R centered at u ∈ V. The
(directed) interference graph G(V, E) induced by these points
is the following: the points in V form the vertex set of G.
Edge (u, v) is in E if v ∈ Du; this is the disk graph model of
ad hoc networks (see also [19]). The radius associated with a
node denotes the region of influence where the transceiver’s
radio signal can be received. Though the radius is a complex
function of the power level of the transceiver, the disk graph
model has been frequently used in several papers as a first
approximation. A popular transmission range used by the
research community is 250 meters (abbreviated 250m), under
the assumption that every device operates at maximum power.

We now define some standard graph theoretic terminology
used in the paper. See [9] for more details.

The degree δv of a vertex (node) v in graph G(V, E) is
the number of edges incident on v. The neighborhood N(v)
of a vertex v is the set of vertices connected by an edge to
v. Let ξv = |{(w, w′) : w, w′ ∈ N(v)}| denote the number
of edges that exist among the neighbors of v and let ξmax

v
=

δv(δv − 1)/2 denote the maximum possible number of such
edges. The clustering coefficient cv of a vertex v is defined as
the ratio ξv/ξmax

v . A (simple) path P from u to v is a sequence
of edges e1, . . . , ek, where ei and ei+1 have a common end
point, u and v are end points of e1 and ek respectively, and no
vertices are repeated in P ; the length of P is k, the number
of edges in it. The distance d(u, v) between nodes u and v
in G is the length of a shortest path between u and v. The
diameter of G is given by max{d(u, v) : u, v ∈ V }. For sets
A, B ⊆ V , the distance d(A, B) between A and B is defined
as min{d(u, v) : u ∈ A, v ∈ B}.

For any two edges e1 = (u1, v1) and e2 = (u2, v2), the
distance d(e1, e2) between them is defined as the minimum
distance between any pair of their vertices; that is, d(e1, e2) =
min{d(u1, u2), d(u1, v2), d(v1, u1), d(v1, v2)}. A subset M ⊆
E of the edges is said to be a distance-2 matching if for any
e1, e2 ∈ M , d(e1, e2) ≥ 2.

B. Distributions in an Urban Environment

We considered two different spatial distributions of
transceivers in our experiments. The first is an equilibrium
state of the Random Waypoint (RW) mobility model [10],
which is widely used by the mobile networking research
community. Basically, upon reaching a destination, a mobile
device will pause, and then choose a new destination within
the simulation area and a new speed, and move in a straight

Fig. 1. Simulated area of downtown Portland.

line. It yields a smooth density profile with a slight bulge in
the middle [22].

To generate spatial distributions in an urban setting, we
used the section of downtown Portland, OR, shown in Fig-
ure 1, measuring 2900m × 2950m. Spatial distributions of
transceivers were obtained by running a realistic population
mobility simulation program (TRANSIMS) developed at the
Los Alamos National Laboratory [5], and taking a snapshot
at one instant in time. It was assumed that each vehicle and
pedestrian participates in the ad hoc network. The reason
for doing this is twofold. First, it gives us a method for
constructing non-uniform distributions in an urban setting.
Second, the study can be naturally extended to ad hoc networks
where the nodes are mobile instead of being stationary. For
our experiments, the system has approximately 1520 vehicle
transceivers along the roadway and 757 pedestrian transceivers
in blocks between roads.

To make a fair comparison between the two classes of
spatial distributions, the grid size for the random distribution is
fixed at 2900m×2950m, and the number of nodes is kept the
same in both classes of distributions. Note that the inclusion
of walkers makes the realistic urban distribution much closer
to the random one in topology and performance than only
vehicles would, because walkers are more evenly distributed
over the simulation area, while vehicles are constrained to the
roads.

For the remainder of the paper, we use the term random
distribution (RD) to mean transceivers distributed in space
using snapshots of locations produced by the random way
point model. Similarly, we use the term structured distribution
(SD) to mean that the transceivers are distributed in an urban
environment as discussed above. We use the terms random
ad hoc networks and structured ad hoc networks to mean
ad hoc networks induced by random distributions and those
induced by structured distributions respectively.

III. STRUCTURAL ANALYSIS

In this paper, we focus on three structural measures of
interference graphs. These are shortest path distribution, size
of distance-2 matching, and balanced cuts. The first provides



an indication of the number of hops needed for packets; the
second provides an indication of the instantaneous capacity of
the MAC layer, and the third has implications for the maxi-
mum amount of flow on the network. A thorough comparison
of random and structured networks with respect to degree
distributions and clustering coefficients can be found in [8].
An interesting result in [8] is that the two distributions have
nearly the same mean degree, but the structured distribution
has a much longer tail.

A. Distribution of Shortest Path Distances

The distribution of shortest path distances is likely to have
a direct bearing on protocol performance. Figures 2(a) and (b)
show how this varies with respect to model, radius and time.
The hop count shown in Figure 2(a) is the number of traversed
edges, which is determined by the topology of the network,
which is in turn determined by the geometric distribution of
the nodes. This explains why the patterns exhibited in Figure
2(a) also appear in Figure 2(b).

B. Instantaneous Capacity of the MAC Layer

In an ad hoc network, interference-free communication on
a set of edges is possible only if the edges form a distance-2
matching, as defined in Section II-A. Balakrishnan et al. [4]
show that this quantity can be used as a good approximation of
the instantaneous MAC capacity of 802.11 type of protocols.
For the spatial distributions considered in this paper, we study
how the size of the distance-2 matching (computed by a greedy
algorithm) varies with radius. (It is shown in [4] that the
value computed by the greedy algorithm is within a constant
factor of the optimal.) This variation (Figure 2(c)) shows an
interesting behavior - up to a certain threshold, the matching
size increases as radius increases and after this threshold, the
matching size starts to decrease, as the interference among the
edges increases. In practical terms, this means that maximum
network capacity cannot be achieved by nodes increasing their
power levels arbitrarily.

C. Balanced Cuts

Because network traffic has a flow like semantics, one
quantity that has important implications to the amount of flow
that can be sent is the cut size. This quantity is a dual of
the flow [1]. The global minimum cut is not the right notion,
however, because for many different power ranges, the graph
might not even be connected, and the minimum cut would be
0 in that case. A better notion is that of balanced partitions.
A balanced k-partition is a partition of the node set V of
a graph G(V, E) into parts V1, . . . , Vk so that |Vi| ≤ dn/ke,
where n = |V |. The cost of such a k-partition is the number of
edges with end points in different parts. A minimum balanced
k-partition is one that minimizes this cost. A ρ-approximate
balanced partition relaxes this requirement of every part being
at most dn/ke to each |Vi| ≤ ρn/k, where ρ is a parameter.

With respect to k-partitioning, the structured ad hoc net-
works and random ad hoc networks display very different
behavior. This is due to the fact that random networks are

generated using a random distribution of points and such
points are more uniformly spatially distributed. On the other
hand, structured networks have nodes correlated to the existing
urban infrastructure, and hence form a very non-uniform
distribution of nodes in the geographic area. This structure
leads to smaller cuts, compared to the random networks, as
depicted in Figure 2(d). Computing a low cost balanced k-
partition is a hard problem, but the METIS software [23] is
known to work well in practice. Figure 2(d) shows how the cut
size for 2-partition varies with increase in radius. The cutsize
for random ad hoc networks is consistently larger, especially
as the broadcast range increases.

D. Spatial Variation in Structural Properties

We also studied the spatial variation in structural properties.
For this purpose, we take the whole city of Portland, and
partition it into several parts, and consider the structured
distribution restricted to those parts (as was done with the
downtown part in Section II-B). We compare the degree,
clustering coefficient and shortest path distributions, and the
instantaneous MAC capacity (Figure 3). These results imply
that the spatial distributions of these basic measures vary
significantly. This fact needs to be considered carefully during
protocol design and the protocol parameters need to be set
accordingly.

IV. PROTOCOL PERFORMANCE

The previous section discussed how the two types of node
distributions differ with respect to some standard graph theo-
retic measures. These differences provides a good indication
of the fundamental trade-offs associated with with packet
transport within each topology. In this section, we relate how
those fundamental structural differences manifest themselves
in the case of a wireless ad hoc network. We simulated some
real protocols using the GloMoSim simulator [3] to study
measures such as fairness, latency and the number of MAC
and routing control packets, as the radius (power level) varies.
The results show that there are trends in ad hoc network
performance associated with the graph analysis measures,
including the expected trade-off between the overheads due
to MAC and routing layers.

The same networks were used for simulation and structural
analysis. The simulation setup is as follows:

Network Topology: Snapshots from the structured (SD) and
random (RD) distributions.

Number of connections: 10 connections, < 15 hops between
source and destination.

Protocols: IEEE 802.11 DCF at the MAC layer and DSR at
the routing layer.

Traffic: 4,000 packets injected per connection over the simu-
lation time. Packet size was 128 bytes, and injection rate 0.025
second. Simulated time was 100 seconds.

Radio propagation model: (i) Propagation path-loss model:
two ray, (ii) Channel bandwidth: 2 Mb, (iii) Channel fre-
quency: 2.4 GHz, (iv) Topography: Line-of-sight, (v) Radio
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type: Accnoise, (vi) Network protocol: IP, (vii) Connection
type: UDP, (viii) In-band data and control, i.e., a single channel
for both data and control packets. (ix) Transmission range
chosen from [100, 800] meters.

Simulator: GloMoSim 2.03.

Simulation statistics: Five runs with independent simulation
seeds for every combination of input parameters.

Performance Measures: The following information was col-
lected to measure the performance: (i) Average end to end
delay (latency) for each packet as measured in seconds,
(ii) Total number of packets received, (iii) Throughput in

bits/second, and (iv) Total number of control packets at the
MAC and routing levels.

Figure 4 shows the results of our simulation. Each panel
shows the variation of the above performance measures with
the transmission radius for the two models. The details re-
garding the measures are given below. For the computation
of (long term) fairness q (Figure 4(a)) we use Jain’s Fairness
Index [14]. Suppose xi is the number of data packets received
by connection i and n is the number of connections. The value

q is then computed as
(
∑

n

i=1
x
′

i
)2

n

∑
n

i=1
x′

i

2
, with x′

i
= xi

x̄i

and where

x̄i is the number of packets that should have been received
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according to user provided “fair” packet allocation. In all our
computations, we have assumed that such a fair allocation
would be an equal number of data packets received for
each connection. This allocation arguably disregards different
levels of contention that each connection is facing due to the
position of respective source-sink pair but is easy to compute,
especially for non-mobile networks. The value of q shows
fairness of allocation on a 〈0.0, 1.0〉 scale, where 0.0 and 1.0
denote unfair and fair respectively. Average fairness measure
is computed as the arithmetic mean over the independent
simulation runs. Average latency (Figure 4(b)) and number
of packets received (Figure 4(c)) are simply measured as
the mean over the independent simulation runs. These two
quantities were collected for each of the 10 connections and
then averaged for each simulation run.

The total number of MAC layer control packets for a node
(Figure 4(d)) was computed as a sum of control packets sent
out; for IEEE 802.11, this number is the sum of RTS, CTS
and ACK packets. The total number of routing layer control
packets for a node (Figure 4(e)) was computed as the total
number of routing control packets sent out; for DSR, this
number is the sum of RREQ, RREP and RERR packets. The
total number of MAC (or routing layer) control packets for a
simulation run was the total of the MAC layer packets (or the
routing layer packets) over all nodes, respectively. The average
number of either kind of control packets was computed as an
arithmetic mean over the simulation runs. Subsequently, this
average measure was adjusted to the number of connections
and to the number of packets. Specifically, we divided the
average number of control packets (for any of the two layers)
by 10 to reflect the number of connections, and by 4 to obtain
number of control packets per 1,000 data packets8. This was

8Note that there are 4,000 data packets per connection.

done in order to make comparison easier9.
Figure 4(a) shows that for both random and structured node

distributions, the value of fairness increases to 1 as the radius is
increased. This is because as radius increases, the path lengths
of the various connections become smaller and roughly equal.
Thus, the number of packets in each of the paths tends to
be the same. The decrease in path lengths with increasing
radius is also the reason for the decreasing trend shown by
average latency and the increasing trend shown by the average
number of received packets (Figure 4(b) and (c) respectively).
The number of MAC layer packets decreases with increasing
radius (Figure 4(d)) since the number of times a packet needs
to be forwarded to a neighbor decreases. On the other hand,
the number of routing layer packets increases with increasing
radius (Figure 4(e)). This is because as the graph becomes
denser (i.e., as the node degrees increase), many nodes have
short paths to the destination and all of them send RREP
packets in response to an RREQ packet.

V. NETWORK ROBUSTNESS

In the final analysis section, we study the robustness of
the ad hoc networks to random edge and node failures. The
basic experimental setup is as follows. In the node dele-
tion experiment, we delete each node independently with a
probability p. We then measure the structural properties of
the modified network as a function of increasing p value.
As before, we study: (i) average degree, (ii) average size
of distance-2 matching and (ii) average diameter. Figure 5
shows the results for these quantities for random and structured
distributions.

We also studied two other classical quantities studied earlier
in percolation theory: (i) the probability that the graph is

9This adjustment ignores the fact that some control packets were used to
negotiate transport for data packets that were later dropped. In general, the
number of packets received and optimal path lengths for all packets should
be considered to assess the performance accurately.



disconnected after deleting nodes with probability p and (ii)
the average number of components that the node deletions
yield. To calculate these quantities, we ran each experiment
with 1000 different random node deletions for a fixed value
of p and took the average. Figures 5(a) and (c) show the results
for this experiment for the node deletion process and Figure
5(b) shows the results for edge deletion. While the probability
of getting disconnected under random deletions varies quite
continuously in Figure 5(a), there seems to be a threshold like
phenomenon in the case of random edge deletions.

The experimental simulation setup that we used to argue
about robustness of ad hoc networks is similar to setup in
Section IV with the following differences. (i) We had 20
connections instead of 10 since this allowed us to better see
the effect of network breaking into more than one connected
component. (ii) We set the bandwidth to 11 Mb/s. (iii) We
decreased the injection rate to 0.1 second thus injecting only
1,000 data packets over the 100-second simulation time; the
data packet size was the same (128 bytes). (iv) There were 10
simulation runs instead of 5. (v) We used transmission radii of
200, 250, 300 meters. Nodes or edges were removed randomly
and independently for each simulation run. Corresponding
simulation results are shown in Figure 6.

The experiments were set up with two basic goals: (i) to
investigate how the performance of protocols deteriorates with
increasing node/edge failures, and (ii) investigate this as a
function of varying broadcast range. Intuitively one expects
the following behavior. The overall network performance will
degrade slowly until a certain threshold point, after which there
would be a rapid drop in its performance. Our results appear to
be the first of its kind where the structural theory of percolation
is integrated with a simulator level study in the context
of communication networks. The important observations and
possible insights and explanations are summarized below.

(1) The average degree of random distribution and structured
distributions were quite close throughout the process of remov-
ing nodes. The distributions were set up so that the average
degrees were close to begin with, but it was a bit surprising
to see them so close as we removed nodes from the graphs.

(2) The average sizes of the distance-2 matching were also
very close in the case of random and structured distributions
throughout the node deletion process (Figure 5(d)). The result
is a bit surprising at first. But the result can be explained
at least intuitively as follows: to begin with, the size of the
distance-2 matching for both distributions was close. Every
time a node is deleted, the matching size can decrease by at
most 1, since only one of the incident edges can be in the
optimal matching. We thus see a steady decrease in the ratio
of matching size by the number of nodes. Note also that the
best value of this ratio can only be 0.5, since each matching
edge consumes two nodes. The result shows that initially the
ratio is roughly 0.15, meaning that the number of matched
nodes is roughly 1/6 of the total number of nodes. The final
value of the ratio is around 1/10. It should be noted that we
are computing an approximately optimum matching and thus

the numbers can be off by a constant factor (approximately
4).

(3) The average number of components and probability of
graph being disconnected show clear differences between
random and structured distributions. Random distributions
are much more uniform and thus exhibit a greater level of
robustness than structured distributions. Note that for partic-
ular instances, it is not a problem if one gets disconnected
components, so far as the source sink pairs are in the same
component and there are at least a few pathways between
the source and destination. In fact, breaking the system into
disconnected components can sometimes be useful, as is
appears in Figure 6. The intuitive reason is that this reduces
MAC layer interference. The performance of the protocols is
a complicated combination of these factors. It also depends on
the amount of traffic and the spatial distribution of the source
sink pairs.

(4) Simulations done in conjunction with graph theoretic anal-
ysis yield potentially interesting insights. The graph theoretic
results suggest that one should expect performance degradation
as nodes/edges are removed. But the precise point appears
to be hard to predict. The main reason is that protocol
performance is a function of multiple variables. Specifically,
graph theoretic analysis shows that diameter of the system
increases and the matching size decreases with increasing
node failure, suggesting that the performance should steadily
worsen. But, note that the graph theoretic parameters are
properties of the entire network while simulations allow us
to study these deletion effects on each connection.

The results show that ad hoc networks as considered here
are structurally very different compared to many other infras-
tructure networks that were shown to be scale-free networks.
An important implication of this distinction as discussed in the
literature has to do with robustness of such systems. Scale-free
networks are quite robust to random failures but are sensitive to
deliberate attacks. On the other hand, ad hoc networks formed
by structured node distributions appear to be robust for both
such attacks.
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Fig. 6. Variation in performance as nodes are deleted. (a) Average number
of active connections (b) Average number of packets received.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We analyzed the structural properties of ad hoc networks
formed by random placements as well as those formed by
placing nodes in an urban infrastructure. Our results show that
first order understanding of the system can be obtained via
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Fig. 5. (a),(b) Probability of the graph becoming disconnected under random node and edge deletions, vs node/edge deletion probability (p). (c) Average
number of components in the case of random node deletions, vs node/edge deletion probability. (d) Average instantaneous capacity (size of distance-2
matching/number of nodes) vs node deletion probability. (e),(f) Variation of average diameter under node and edge deletions vs node/edge deletion probability.

graph theoretic analysis; the results also point out the need for
simulations to better understand the overall performance of the
induced communication network. Our end-to-end analysis on
network robustness is new and demonstrates the usefulness of
structural analysis combined with simulations.

The current analysis does not take into account occlusions;
a subsequent study will take this important parameter into
consideration. Nevertheless, the process of edge deletion is
a first step in understanding such effects. Another direction
for future work includes study of mobile nodes in an urban
environment and allowing non-uniform broadcast ranges for
the nodes.
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